$\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$, a Novel Thallium Compound Containing Isolated $\mathrm{Tl}_{5}{ }^{7-}$ and $\mathrm{Tl}_{9}{ }^{9-}$ Groups. A New Hypoelectronic Cluster

Zhenchao Dong and John D. Corbett*
Contribution from the Ames Laboratory-DOE ${ }^{1}$ and Department of Chemistry, Iowa State University, Ames, Iowa 50011

Received December 6, 1993*

Abstract

The title compound is synthesized in high yield by fusion of the elements in sealed Ta containers followed by slow cooling to and annealing at $250^{\circ} \mathrm{C}$. The structure was established by single crystal means ($\mathrm{Cmcm}, Z=4$, $a=11.345$ (2) $\AA, b=13.807$ (3) $\AA, c=41.832$ (8) $\AA, R / R_{w}=5.3 / 4.3 \%$). The independent unit contains two Tl_{5} and one Tl_{9} units ordered in layers and well separated by the cations which bond to, and bridge between, faces, edges, and vertices of the clusters. The sodium appears essential in this role. The former cluster, a distorted trigonal bipyramid (C_{m} symmetry), is proportioned as is $\mathrm{Pb}_{5}{ }^{2-}$, etc. and should be analogously formulated as the isoelectronic $\mathrm{Tl}_{5}{ }^{7-}$ according to EHMO calculations. The new Tl 9 geometry $\left(C_{2 v}, d(\mathrm{Tl}-\mathrm{Tl})=3.13-3.44 \AA\right)$ can be obtained by substantial elongation of two side edges of a tricapped trigonal prism ($D_{3 h}$) so that the intervening face-capping atom moves close to that face and becomes eight-bonded. MO calculations illustrate how this distortion of either $\mathrm{Big}_{9}{ }^{5+}$ - or $\mathrm{B}_{9} \mathrm{H}_{9}{ }^{2-}$-like polyhedra affords a hypoelectronic state for $\mathrm{Tl}_{9}{ }^{9-}$ ($2 n$ skeletal electrons). More direct geometric and electronic relationships are found on removal of four adjoining vertices from a centered icosahedral Tl_{13}. The compound is diamagnetic and a very poor conductor ($\rho_{293} \sim 800 \mu \Omega \cdot \mathrm{~cm}$).

Introduction

Four kinds of larger isolated clusters have been found for thallium in addition to the Tl_{2} dimers present in $\mathrm{Li}_{5} \mathrm{Tl}_{2}{ }^{2}$ and $\mathrm{Sr}_{5}-$ $\mathrm{Tl}_{3}\left(\mathrm{Cr}_{5} \mathrm{~B}_{3}\right.$ type $) .{ }^{3}$ One is the classical tetrahedral $\mathrm{Tl}_{4}{ }^{8-}$ anion in $\mathrm{Na}_{2} \mathrm{Tl},{ }^{4}$ which has 12 skeletal electrons and is isoelectronic and isosteric with $\mathrm{Pb}_{4}{ }^{-}$and P_{4}. Two relatively recent additions are (a) the 18-electron, hypoelectronic, pentacapped trigonal prismatic $\mathrm{Tl}_{11}{ }^{7}$ - ions in $\mathrm{A}_{8} \mathrm{Tl}_{11}, \mathrm{~A}=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs},{ }^{5,6}$ metallic solids comparable to $\mathrm{K}_{8} \mathrm{In}_{11}{ }^{7}$ and (b) the analogous, tetragonally-compressed "octahedra" $\mathrm{Tl}_{6}{ }^{6-}$ in KTl. ${ }^{8}$ Finally, $\mathrm{Tl}_{10} \mathrm{Zn}^{8-}$, a discrete, bicapped square antiprism of Tl centered by Zn , is present in $\mathrm{K}_{8} \mathrm{Tl}_{10} \mathrm{Zn}^{6}$ in a phase that is isostructural with $\mathrm{K}_{8} \mathrm{In}_{10} \mathrm{Zn}$. ${ }^{9}$ Some extended three-dimensional network structures also exist. The best known is the stuffed diamond array found in $\mathrm{NaTl}(d(\mathrm{Tl}-\mathrm{Tl})=3.24 \AA)$ where the thallium sublattice was aptly described as ${ }_{\infty}^{3}\left[\mathrm{Tl}^{-1}\right]$ by its discoverers Zintl and Dullenkopf. ${ }^{10}$ A few extended structures that contain linked icosahedra, pentagonal antiprisms, and hexagonal antiprisms of thallium have also been identified recently. ${ }^{6}$

We report here on the novel "naked" clusters $\mathrm{Tl}_{5}{ }^{7-}$ and $\mathrm{Tl}_{9}{ }^{9-}$ that occur in the phase $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$. Both can be understood with relatively simple bonding pictures, the first according to Wade's rules ${ }^{11}$ and the second, as another hypoelectronic version of more conventional clusters but in a new geometry. The new compound nicely illustrates how delicately size factors and electronic requirements can combine to create an unprecedented threedimensional structure in which new cluster anions have been trapped.

[^0]
Experimental Section

Syntheses. The title compound was obtained unexpectedly from a reaction designed for the preparation of KTl , evidently because of a mixup of reagents. The pure phase was later synthesized from the constituent elements in a reaction with the stoichiometry determined by a single crystal X-ray structural analysis. Because both reactants and the product are very sensitive to air and moisture, all handling operations were performed in a glovebox in a N_{2} atmosphere with humidity less than 0.01 ppm vol. The surfaces of the Na (99.9\%, Alpha), K (99.9%, Baker), and $\mathrm{Tl}(99.998 \%$, Johnson-Mathey) metals were cleaned with a scalpel before weighing and transfer. An $\sim 250-\mathrm{mg}$ mixture was placed in a tantalum tube ($3 / 8$ inch $0 . d$.) already welded at one end, and this was tightly crimped and arc welded under a He atmosphere. The container was then sealed in a fused silica jacket under high vacuum and heated in a tubular furnace. The samples were initially homogenized in the liquid state at $500^{\circ} \mathrm{C}$ for 15 h , slowly cooled to $250^{\circ} \mathrm{C}$ at a rate of $5 \mathrm{deg} / \mathrm{h}$ and equilibrated at this temperature for 15 days, and finally cooled to room temperature at a rate of $3 \mathrm{deg} / \mathrm{h}$. The new phase is exceedingly brittle, and the black crystalline fragments exhibit bright metal-like surfaces. EDAX (energy dispersive analysis by X-ray) results on several crystals confirmed the presence of Na, K, and Tl atoms and gave compositions close to the $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$ deduced by crystallography. The structure is not formed from thallium plus $\sim 1: 10$ mixtures of either $\mathrm{Na}-\mathbf{R b}$ or $\mathrm{K}-\mathrm{Rb}$ cations.

X-ray Powder Diffraction. X-ray powder patterns were collected under vacuum from finely ground samples that had been mounted between pieces of cellophane tape. An Enraf-Nonius Guinier camera with $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.540562 \AA$) and NBS (NIST) silicon as an internal standard were employed for this purpose. The powder pattern calculated on the basis of the refined structural model matched the observed one very well, and least-squares refinement of 55 measured 2θ values together with their indices and those of the standard Si lines resulted in orthorhombic cell dimensions of $a=11.345(2) \AA, b=13.807(3) \AA, c=41.832(8) \AA$, and $V=6553(2) \AA^{3}$.

Physical Properties. The resistivity of the phase was examined by the electrodeless "Q" method ${ }^{12}$ for two samples of ~ 80 and $\sim 85 \mathrm{mg}$ that were sieved to $250-400 \mu \mathrm{~m}$ powders and mixed with $\mathrm{Al}_{2} \mathrm{O}_{3}$. Measurements were made at 35 MHz over the range of $153-293 \mathrm{~K}$. Magnetic susceptibility data were obtained from a $28.4-\mathrm{mg}$ ground sample of the title compound sealed under He in the container type described elsewhere. ${ }^{13}$ Magnetization data were measured at a field of 3 T over the range of

[^1]Table 1. Selected Data Collection and Refinement Parameters for $\mathrm{Na}_{\mathbf{2}} \mathrm{K}_{21} \mathrm{Tl}_{19}$

space group, Z	$C m c m$ (no. 63), 4		
lattice parameters, ${ }^{a} \AA$			
a	$11.345(2)$		
b	$13.807(3)$		
c	$41.832(8)$		
vol, \AA^{3}	$6553(2)$		
no. indep. obs. refl. $(I>3 \sigma(I))$, variables	1492,117		
$\mu, \mathrm{~cm}^{-1}(\mathrm{Mo} \mathrm{K} \alpha)$	483.55		
residuals, $R, R_{w}{ }^{b}$	$0.053,0.043$		
a Guinier data, $\lambda=1.540562 \AA, 20^{\circ} \mathrm{C} .{ }^{b} R=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / \Sigma\right\| F_{\mathrm{o}}\right\| ; R_{w}\right.$			
$=\left[\sum w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \sum w\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2}, w=\sigma_{\mathrm{F}}{ }^{-2}$.			

6-300 K on a Quantum Design MPMS SQUID magnetometer. The raw data were corrected for the susceptibility of the container and for atom core diamagnetism. ${ }^{14}$

Structure Determination. Many well-formed crystals of the major phase were obtained from the initial reaction. Several plate-like members were sealed in thin-walled capillaries, and Laue, oscillation, and Weissenberg photographs were used to check the singularity of crystals and possible space group assignments. A single crystal with dimensions ca. $0.5 \times 0.3 \times 0.1 \mathrm{~mm}$ was chosen for data collection, which was carried out at room temperature on CAD4 single crystal diffractometer with the aid of graphite-monochromated Mo $\mathrm{K} \alpha$ radiation. A C-centered orthorhombic cell with lattice constants as expected from the film studies was obtained on programmed indexing of 25 reflections from a random search over $14^{\circ} \leq 2 \theta \leq 30^{\circ}$. One octant of data was collected with the C-centered absences imposed. The data were corrected for Lorentz and polarization effects and for the strong absorption ($\mu=484 \mathrm{~cm}^{-1}$) with the aid of the average of five ψ-scans of reflections at different θ values. Both the film results and the reduced data were consistent with only two space groups, Cmcm (no.63) and $\mathrm{Cmc} 2_{1}$ (no. 36). The Wilson statistics suggested a centrosymmetric space group, and hence the former was chosen for the first and successful trial. Selected details of the data collection and refinement are listed in Table 1.

Application of the direct methods ${ }^{15}$ gave eight apparent heavy atom positions plus others with heights only about 25% of the first set. Interatomic distances among the former ranged between 3.0 and $3.5 \AA$, typical for $\mathrm{Tl}-\mathrm{Tl}$ distances. These were therefore so assigned for the first few cycles of least-squares refinements. (All calculations were performed using the TEXSAN package. ${ }^{16}$) The subsequent difference Fourier synthesis revealed nine additional peaks, seven of which could be assigned as K without any difficulty on consideration of probable $\mathrm{K}-\mathrm{Tl}$ and $\mathrm{K}-\mathrm{K}$ distances. Sodium was assigned to a smaller peak with distances of 3.1$3.25 \AA$ to Tl and of $3.5-3.8 \AA$ to K . The ninth position (K8) had one short contact to $\mathrm{T} 12,3.37 \AA$, but all other distances were normal. Refinement with isotropic thermal parameters proceeded smoothly, and a DIFABS empirical absorption correction ${ }^{17}$ applied after convergence lowered R from 13 to 8%. The K8 atom lay very close to the special position $4 c(m 2 m ; 0, y, 1 / 4)$ with a z coordinate that produced a pair of atoms separated by $0.99(5) \AA$. After anisotropic refinement, a multiplicity variation for K 8 with all other atoms fixed indicated that each site is $50.0(1) \%$ occupied. Similar procedures applied to the occupancy refinements for Tl, Na, and all other K atoms (in parts) indicated that these sites were fully occupied as the deviations from unity were all less than 3σ, and they were so fixed thereafter. The anisotropic refinement, including a secondary extinction correction, converged with the residuals $R(F)=5.3 \%, R_{w}(F)=4.3 \%$, and GOF $=1.55$. The highest residual peak in the final difference Fourier map was $2.83 \mathrm{e}^{-} / \AA^{3}, 1.10 \AA$ from Tl2. The $R_{\text {int }}$ value of 7.0% for observed data and a somewhat larger-than-normal residual peak in the final difference Fourier map were likely both influenced by the high absorption and the small number of duplicate reflections (~ 100), and their limited distribution in reciprocal space as these affected the absorption correction.

K8 is the only atom in this structure that might suggest a possible noncentric symmetry. Its position has $m 2 m$ symmetry, and removal of the 2 -fold axis along b and the mirror perpendicular to c would reduce the group symmetry to $C m c 2_{1}$ (no. 36) and eliminate the split position for K8. However, the solution and refinement of the structure in this
(14) Selwood, P. W. Magnetochemistry, 2nd ed.; Interscience Publishers: New York, 1956; p 70.
(15) SHELXS-86, Sheldrick, G. M. Universităt Göttingen, Germany, 1986.
(16) TEXSAN, version 6.0 package, Molecular Structure Corp.: The Woodlands, TX, 1990.
(17) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.

Table 2. Interatomic Distances (\AA) in $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}(<5 \AA)$

Tl 1					
Tl1	3.418(5)	Tl 4	$2 \times 3.31 .6$ (2)	K6	3.95(2)
Tl2	3.438(3)	K1	$2 \times 3.696(9)$	K7	4.24(2)
Tl 3	2×3.275 (2)	K5	$2 \times 3.550(9)$		
Tl 2					
Tl 1	$2 \times 3.438(3)$	Tl 4	$4 \times 3.128(2)$	K8	3.37(2)
Tl3	$2 \times 3.228(2)$	K1	2×3.78 (1)		
Tl 3					
T1 1	2×3.275 (2)	K1	3.49(1)	K7.	2×4.50 (1)
Tl 2	3.228(2)	K1	3.54(1)	K8	3.53(1)
Tl 4	$2 \times 3.302(2)$	K5	2×3.81 (1)		
Tl 4					
Tl 1	3.316(2)	K1	$3.689(7)$	K6	3.93(1)
Tl 2	3.128(2)	K4	3.95(1)	K7	4.063(2)
Tl 3	3.302(2)	K5	3.874(9)	K8	4.49(2)
Tl 4	3.223(2)	K5	3.634(9)	Na	3.22(2)
Tl 5					
Tl 6	3.405(3)	K2	3.97(1)	K3	$2 \times 3.84(1)$
Tl 7	3.164(4)	K2	3.67 (2)	K4	$2 \times 3.98(1)$
Tl 8	2×3.251 (2)	K3	$2 \times 3.953(8)$		
Tl 6					
Tl 5	3.405(3)	K3	$2 \times 3.809(9)$	K6	4.76(2)
Tl 7	3.537(3)	K3	$2 \times 3.81(1)$	Na	3.13(2)
Tl 8	2×3.072 (2)	K4	$2 \times 4.053(9)$		
Tl 7					
Tl 5	3.164(4)	K4	$2 \times 3.598(8)$	K7	3.66(2)
Tl 6	$3.537(3)$	K5	$2 \times 3.581(9)$	Na	3.11 (2)
T18	$2 \times 3.111(2)$				
Tl 8					
Tl 5	3.251(2)	K2	3.795(9)	K4	3.641(9)
Tl 6	3.072(2)	K3	3.73(1)	K5	3.89(1)
Tl 7	3.111(2)	K3	3.85(1)	K6	3.806 (9)
Tl 8	4.906 (2)	K4	3.692(9)	Na	4.04(2)
K1					
Tl 1	$2 \times 3.696(9)$	Tl 3	3.54(1)	K5	2×4.03 (1)
Tl 2	3.77(1)	Tl 4	$2 \times 3.689(7)$	K7	2×3.93 (2)
Tl 3	3.49(1)	K1	4.42(2)	K8	3.95(2)
K2					
Tl 5	3.67(2)	K2	4.08(3)	K4	2×4.09 (2)
Tl 5	3.97(1)	K3	2×4.42 (1)	K6	4.02(2)
Tl 8	$2 \times 3.795(9)$	K3	$2 \times 4.38(1)$		
K3					
T1 5	3.953(8)	T1 8	3.73(1)	K3	3.95(1)
T1 5	3.84(1)	T1 8	3.85(1)	K3	3.91(2)
Tl 6	3.809(9)	K2	4.42(1)	K3	3.85(2)
Tl 6	3.81(1)	K2	4.38(1)	K4	3.95(2)
K4					
Tl 4	3.95(1)	Tl 8	3.641(9)	K5	4.59(1)
Tl 5	3.98(1)	K2	4.09(2)	K6	4.13(1)
Tl 6	4.053(9)	K3	3.95(2)	K7	4.24(2)
T17	3.598(8)	K5	4.34(1)	Na	3.75(1)
Tl 8	3.692(9)				
K5					
Tl1	3.550(9)	Tl 8	3.89(1)	K6	3.92(1)
Tl 3	3.81(1)	K1	4.03(1)	K7	4.27(2)
Tl 4	3.874(9)	K4	4.34(1)	K8	3.95(2)
Tl 4	3.634(9)	K4	4.59(1)	Na	3.58(2)
Tl 7	3.581(9)				
K6					
Tl 1	3.95(2)	T1 8	$2 \times 3.806(9)$	K5	$2 \times 3.92(1)$
Tl 4	2×3.93 (1)	K2	4.02(2)	Na	3,81(3)
Tl 6	4.76(2)	K4	2×4.13 (1)		
K7					
Tl 1	4.24(2)	Tl 7	3.66(2)	K5	$2 \times 4.27(2)$
Tl 3	2×4.50 (1)	K1	2×3.93 (2)	K8	4.08(3)
Tl 4	2×4.063 (2)	K4	2×4.24 (2)		
K8					
Tl 2	3.37(2)	K1	. 2×3.95 (2)	K7	4.08(3)
Tl 3	2×3.53 (1)	K5	$2 \times 3.95(2)$	K8	0.99(5)
Tl 4	2×4.49 (2)				
Na					
Tl 4	2×3.22 (2)	Tl 8	$2 \times 4.04(2)$	K5	$2 \times 3.58(2)$
Tl 6	3.13(3)	K4	$2 \times 3.75(1)$	K6	3.81(3)
T17	3.11(2)				

space group still gave two equal and independent peaks around this position separated by $1.01 \AA$. There is another possible space group, A2am (no. 40); however, structure solution and refinement in this once again resulted in two close, independent peaks in the difference Fourier map. All these factors suggested that the K8 splitting is real, consistent with the coordination environment of the site, as will be described in the next section. It is not surprising that refinements with the above, lower symmetry space groups also resulted in pronounced correlations between appropriate variables for those pairs of atoms that are symmetry equivalent in the centric case.

In order to understand more about both the splitting of the K8 position and the observed property behaviors (below), a data set was also collected at about $-60^{\circ} \mathrm{C}$ using a smaller crystal, a faster scanning speed, and the same diffractometer. The structure was essentially the same, except that the K8 position could no longer be split but remained fixed at the special position $4 c(0, y, 1 / 4)$. However, its anisotropic thermal parameters with a U_{33} / U_{11} ratio of $\sim 15: 1$ still strongly indicated that the atom was disordered along the [001] direction. The other positional parameters remained within 2σ of those from the earlier study. The ellipsoids were about half as large as before, while the errors were all about 50% larger, presumably because of fewer data (1069 reflections, 115 variables; R / R_{w} $=0.053 / 0.052 ; a=11.276$ (3) $\AA, b=13.702$ (2) $\AA, c=41.553$ (3) \AA, $V=6420(3) \AA^{3}$).

The positional and displacement parameters are contained in the supplementary material. These as well as structure factor data are also available from J.D.C.

Results and Discussion

Structure Description. The most spectacular features of this structure are the coexistence of two separate "naked" thallium cluster anions, $\mathrm{Tl}_{5}{ }^{7-}$ as a distorted trigonal bipyramid and $\mathrm{Tl}_{9} 9^{--}$ which can be considered to be a strongly distorted tricapped trigonal prism. The charges (oxidation numbers actually) assigned to the ions correspond to the electron localization expected from properties of the phase and the relative stabilities predicted from calculations (below). Both are the first examples found among the triels $\mathrm{Tl}, \mathrm{In}, \mathrm{Ga}$, and Al . Isoelectronic, approximately trigonal bipyramidal ions ($\sim D_{3 h}$) have previously been reported for $\mathrm{Sn}_{5}{ }^{2-}, \mathrm{Pb}_{5}^{2-,}{ }^{18}$ and $\mathrm{Bi}_{5}{ }^{3+},{ }^{19}$ while nothing of the geometric character of $\mathrm{Tl}_{9}{ }^{9-}$ has evidently been seen before. Nine-atom tricapped trigonal prisms (closo, $\sim D_{3 h}$) with 20 (or 22) skeletal electrons are known for $\mathrm{B}_{9} \mathrm{H}_{9}{ }^{2-}{ }^{20} \mathrm{~B}_{7} \mathrm{C}_{2} \mathrm{H}_{7}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{20}\right),{ }^{21} \mathrm{Ge}_{9}{ }^{2-},{ }^{22}$ and $\mathrm{Bi}_{9}{ }^{5+},{ }^{23.24}$ while nido- $\mathrm{Ge}_{9}{ }^{4-},{ }^{22}$ and Sn^{94-25} occur as $\sim \mathrm{C}_{40}$ monocapped square antiprisms with the appropriate 22 skeletal electrons. ${ }^{26}$

Each formula unit $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$ contains two Tl_{5} and one Tl_{9} clusters. The nearest neighbor distances within $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$ are given in Table 2. The former cluster, Figure 1, is apparently derived from the idealized ($D_{3 h}$) trigonal bipyramid but has only exact mirror $\left(C_{m}\right)$ symmetry through the waist atoms $\mathrm{Tl} 5, \mathrm{Tl} 6$, and Tl 7 . Ranges in equatorial-equatorial and axial-equatorial distances, 0.38 and $0.18 \AA$, respectively, evidently result from uneven bonding to/distortions by neighboring cations (below). The average values, $3.369(3)$ and $3.145(2) \AA$, respectively, correspond to a slightly compressed trigonal bipyramid with the longer distances between the four-bonded waist atoms. If fact, such a geometric feature is remarkably analogous to that in $\mathrm{Sn}_{5}{ }^{2-}$, $\mathrm{Pb}_{5}{ }^{2-}$, and $\mathrm{Bi}_{5}{ }^{3+}$, where the differences between these two types of distances are $0.23,0.24$ and $0.31 \AA$, respectively, very similar

[^2]

Figure 1. The $\mathrm{Tl}_{5}{ }^{7-}$ cluster unit in $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$, a distorted trigonal bipyramid. (C_{m} symmetry, 50% thermal displacement ellipsoids for all figures.)
to the $0.22 \AA$ in Tl_{5}. The intracluster distance $\mathrm{T} 18-\mathrm{T} 18,4.906$ \AA, is long enough to exclude any significant bonding interaction.
The polyhedron found for Tl_{9} is shown in three views in Figure 2. An unambiguous association of this with a familiar, highsymmetry nine-a tom reference is difficult thanks to its pronounced distortion. The $D_{3 h}$ tricapped trigonal prism and $C_{4 v}$ monocapped square antiprism are symmetry limits for common nine-atom polyhedra, with the former generally the electron poorer, and the usual fluxionality observed within examples of the former is generally viewed as proceeding via the latter. ${ }^{26-28}$ The nature of the distortion from $D_{3 h}$, Figure 3b, through $C_{2 v}$ and toward $C_{4 v}$ proceeds along a normal vibration by simple elongation of one side edge of the trigonal prism, together with a decrease in the separation between the two adjoining capping atoms, Figure 3a, so that these four atoms eventually define the diagonals of the square base of the new C_{40} figure. The opposite distortion with two prism heights increased and one fixed (or shortened) gives a hitherto unknown $C_{2 v}$ intermediate ${ }^{29}$ (and an alternate fluxional route ${ }^{27}$). This process clearly seems to lie on the path to the present Tl_{9} shown in Figure 2a. In this way, the original tricapped trigonal prism in Figure 3b (numbered according to the new Tl_{9}) is lengthened along the two T14-Tl4 edges and relatively shortened along Tl1-Tl1, Figure 3c. The three former capping atoms become Tl 2 and 2 Tl 3 . The C_{2} axis through Tl 2 that bisects the Tll-Tll edge and the two mirror planes that contain that axis and pairs of Tl 3 or Tl 1 atoms are retained.
The observed Tl_{9} is, however, considerably more distorted than originally visualized for the $C_{2 v}$ transition state. Two side edges in the original trigonal prism, T14-T14, open up greatly to 5.34 \AA, but fairly normal distances to the capping T12 and T13 atoms are preserved, 3.13 and $3.30 \AA$, respectively, vs an average of 3.27 \AA over the polyhedron. As seen better in Figure 2b, the capping Tl2 atom moves to $0.25 \AA$ above the plane of the Tl4 atoms. At the same time, T12 also gains four additional neighbors, 2TI1, the far edge of the original prism, and 2 Tl 3 , the other two facecapping atoms, at 3.44 and $3.23 \AA$, respectively. The separation between the other face-capping atoms, $\mathrm{T} 13-\mathrm{T} 13$, remains very long, $5.18 \AA$.

The dihedral angle criteria ${ }^{26,27}$ that are widely considered to be more definitive and expeditious in differentiating polyhedra

[^3]

Figure 2. (a, b) Two orthogonal views of $\mathrm{Tl} 9^{9}$ - anion $\left(C_{2 v}\right)$ in $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$, a strongly distorted tricapped trigonal prism. The 2 -fold axis and mirror planes lie normal to the page in a. (c) The close relationship of the observed species to the centered icosahedral Tl_{13}.

Figure 3. The $C_{2 v}$ distortions of a tricapped trigonal prism ($D_{3 h}$, center) toward, left, an unicapped square antiprism ($C_{4 v}$) or, right $\mathrm{Tl}_{9}{ }^{9-}$, through lengthening of one or two edges of the trigonal prism, respectively.
emphasize how strongly the Tl_{9} geometry deviates from the ideal values. Thus, the characteristic vicinal angles defined by capping atoms and the shared edge, e.g., the two 1-3-1 planes in Figure 3 b , change from $\delta \sim 22^{\circ}$ for $D_{3 h}\left(\mathrm{Big}_{9}{ }^{5+26}\right)$ to 44.3° for the $1-3-1$
pair and $51.1^{\circ} \times 2$ for 2-4-4 and 3-4-4. Similarly, the parallel triangular ends, for which $\delta=180^{\circ}$ in $D_{3 h}$, diverge so that δ becomes 141.4° in Tl_{9} (vs 158° in the opposite sense in $\mathrm{Sn}_{9}{ }^{4}$, etc.). In spite of the sizable differences, Tl , does seem to relate better to the $D_{3 h}$ parent than to any other fairly regular nineatom figure we have found. The average bond lengths about each atom (and the number of neighbors) are Tll, $3.340 \AA$ (6); $\mathrm{Tl} 2,3.230 \AA$ (8); T13, $3.276 \AA$ (5); and T14, $3.242 \AA$ (4). These averages compare with $3.220 \AA$ in Tl_{5} as well as $3.18 \AA$ in $\mathrm{Tl}_{6}{ }^{6-}$ ($D_{4 h}$) and $3.24 \AA$ in $\mathrm{Tl}_{4}{ }^{8-}$ with only four-bonded atoms. Longer distances normally follow an increase in the number of bonded neighbors and more delocalization, so that the short bonds about the unique eight-bonded Tl 2 are especially remarkable.
The novel $\mathrm{Tl}_{9}{ }^{9-}$ can also be readily derived from a centered icosahedron by removal of four adjoining vertices, as shown in Figure 2c. The polyhedron in Figure $2 b$ is thus also generated from two pentagonal bipyramids defined by axial Tl1 and shared T 12 that are fused and share both T 13 and bifunctional Tl 1 atoms. This approach proves to be especially useful in electronic descriptions (below). Yet another but seemingly less useful polyhedral description can be found in Figure 2a, a trigonalbipyramidal Tl_{5} unit defined by axial Tl 3 and equatorial 2 Tl 1 , T12 (with the customarily larger waist distances, $3.43 \AA$) that is tetracapped by 4T14.
Cation Dispositions. Many of the larger, newly discovered naked indium and thallium clusters have relatively low charges and thence fewer countercations per cluster, roughly $8-11.5$, and the apparently specific roles of the alkali metal ions about cluster faces, edges and vertices, often in a dual bridging role, have been commented on before. Indeed, the polyhedral choice for $\mathrm{In}_{10} \mathrm{Ni}^{10}$ could be rationalized in terms of a need for more faces and longer edges to accommodate the cations. ${ }^{30}$ The cation environments about each cluster in the present phase are illustrated in the supplementary material. The trigonal-bipyramial Tl_{5} in $\mathrm{Na}_{2} \mathrm{~K}_{21^{-}}$ Tl_{19} is surrounded by 20 alkali-metal atoms. Each axialequatorial edge is μ_{2}-bridged by one K atom ($\mathrm{Tl} 5-\mathrm{Tl} 8, \mathrm{~T} 16-\mathrm{Tl} 8$, T17-T18 by K3, K4, K5, respectively), and the longest equatorial edge T16-T17 is μ_{2}-bridged by Na. The four triangular faces meeting at Tl5 are each μ_{3}-capped by a K 3 or K 4 atom that is edge-bridging in another Tl_{5}. Finally, all vertices have two exobonded $\mathrm{K}(2,3$, or 6$)$ atoms, with the exception of T 17 which has only one exo-bonded K7 atom and this is close only to that thallium. The distortion of Tl_{5} is probably related to the foregoing, nonisotropic environment, as with $\mathrm{Tl}_{6} 6-8$ and smaller deviations are to be expected in the presence of larger alkali-metal cations, as in $\mathrm{CsTl}{ }^{6}$
The surroundings of Tl_{9} are a little more complex, with 29 alkali-metal atoms. All triangular faces but two are capped by K atoms. The two edge-shared $\mathrm{Tl} 2-\mathrm{Tl} 3-\mathrm{Tl} 4$ faces are capped by a single $\mu_{4}-\mathrm{K} 1$ atom, while the smaller Tl2-T14-T14 faces are not capped, rather the short T14-T14 edges are μ_{2}-bridged by Na atoms. $\mathrm{Tl1}, \mathrm{Tl} 2$, and Tl 3 each have one exo-bonded K atom, and Tl4, three ($\mathrm{K} 4,5,7$). Conversely, the overall coordination around $\mathrm{Tll}, \mathrm{Tl} 3, \mathrm{Tl4}$, and T 15 is each derived from more or less distorted icosahedra, while T12 and T18 are 11-coordinated within nidoicosahedra, T16 centers a bicapped pentagonal prism, and T17 is ten-coordinate, all of these being distorted. Compared with other K atoms, K6 and K7 have more open environments in terms of the $\mathrm{K}-\mathrm{Tl}$ distances around them, and this probably relates to their larger thermal parameters, 5.8 and $7 \AA^{2}$, respectively, vs 3.5-5.0 $\AA{ }^{\AA}$ for the rest. For instance, K7 has only one Tl neighbor at <4.00 \AA. Each of the split K8 atoms has only three close Tl atoms, being exo to 2 Tl 3 and particularly close to Tl 2 in the same role (at $3.37 \mathrm{vs} \geq 3.5 \AA$ for the others). The fact that this K8 refines split and $0.5 \AA$ above or below the mirror plane defined by Tl 2 and the two Tl 3 can be understood to result from the already short K8-Tl2 distance plus the fact that there no other

[^4]neighbors beyond this fairly flat face on Tl short of Tl 4 at 4.5 \AA and two exo K5 and K1 in the same mirror plane and $3.95 \AA$ removed.

The Na atom is tetrahedrally coordinated by four Tl atoms ($2 \mathrm{Tl} 4, \mathrm{Tl} 6$, and Tl 7). The average $\mathrm{Na}-\mathrm{Tl}$ distance is $3.17 \AA$, close to $3.24 \AA$ in $\mathrm{NaTl},{ }^{10}$ and the average $\mathrm{Na}-\mathrm{K}$ distance is 3.69 \AA, near the $3.61 \AA$ in $\mathrm{KNa}_{2}{ }^{31}$ Thus the size of this tetrahedral cavity is very appropriate for sodium, but it is presumably too small for a potassium (or another phase is more stable), and the binary $\mathrm{K}_{23} \mathrm{Tl}_{19}$ does not form. We have repeatedly noted that factors such as this seem particularly important in the stabilization of phases containing diverse networks and new clusters in which the products must satisfy reasonable packing requirements, cation bonding to (solvation of) the cluster anions, and, ultimately, the requisite stoichiometry and cluster electron counts, as will be discussed below.

The overall cluster packing is also very interesting. As shown in a [001] view in Figure 4a, the Tl_{9} units are connected in layer through the triangularly coordinated K 8 atoms that are bonded exo to Tl 2 and 2T13. These close-packed, rectangular layers alternate with similar, eclipsed pairs of Tl_{5} layers in which the Tl_{5} clusters fall directly above and below the K 8 atoms. The Tl_{5} layers are in turn separated by double K3 (and K2) layers, as can be seen in the [010] side view in Figure 4b. The shortest intercluster distances, $\mathrm{Tl} 6-\mathrm{Tl} 6=5.20 \AA$, lie across this double K layer, while the next shortest, $d(\mathrm{~T} 14-\mathrm{Tl} 7)=5.50 \AA$, is also between layers.

Properties and Bonding. Magnetic measurements yielded almost temperature-independent susceptibilities of $-(12.5-13.5)$ $\times 10^{-4} \mathrm{emu} / \mathrm{mol}$ for the title compound over $6-300 \mathrm{~K}$ after container correction. Two types of diamagnetic corrections were applied, as before, ${ }^{7,8,13}$ for the contributions from the ionic cores and the Larmor precession of the orbital electrons in each cluster (Langevin contribution). For the latter, we appropriately averaged the distances from the center of each cluster to the middle of the different types of $\mathrm{M}-\mathrm{M}$ edges on its surface to gain r_{av} assuming no significant further delocalization onto the cations. The ion core corrections totaled $9.29 \times 10^{-4} \mathrm{emu} / \mathrm{mol}$ and the Larmor precession, $1.76 \times 10^{-4} \mathrm{emu} / \mathrm{mol}$ of $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$. Therefore, the net molar susceptibility χ_{M} is about $-(1.5-2.5) \times 10^{-4}$ $\mathrm{emu} / \mathrm{mol}$, indicating a diamagnetic property. The net value would be a little closer to zero were diamagnetic contributions from the presumed largely lone-pair $6 s^{2}$ valence electrons on thallium to also be included. Resistivity data from two ground samples measured by the Q method over 153-293 K, noisy because of the relatively high resistivities, ranged between $\sim 800 \mu \Omega \cdot \mathrm{~cm}$ at the extremes and $\sim 200 \mu \Omega \cdot \mathrm{~cm}$ at $243(\pm 10) \mathrm{K}$ with another possible downturn above $\sim 280 \mathrm{~K}$. The meaning of these possible variations is not clear, but the second structural refinement at $\sim 213 \mathrm{~K}$ (Experimental Section) made it clear that the latter two effects do not involve phase transitions. No inflections were observed in the magnetic data either. The resistivities are in any case so large that localization of a very large fraction of the valence electrons is obvious.

Electronic structure calculations were carried out on the isolated
 real cluster geometries were studied for the sake of comparison and discussion. Atomic parameters employed for thallium and their justification have been described elsewhere. ${ }^{8}$ Calculated results for the Tl_{5} unit both as observed $\left(C_{m}\right)$ and for the idealized $D_{3 h}$ version with average values for the two unique dimensions gave the same bonding conclusions. The Tl_{5} trigonal bipyramid exhibits 11 occupied valence orbitals, six bonding skeletal orbitals plus five low-lying members that are mainly 6 s pairs on the atoms. The $\mathrm{Tl}_{5}{ }^{7-}$ cluster anion is calculated to have a HOMO-LUMO gap of $\sim 0.86 \mathrm{eV}$ with a $7 \mathrm{a}^{\prime}$ HOMO level at -5.95 eV . In other

[^5]

Figure 4. (a) [001] view of a portion of $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$ showing the layers of $\mathrm{Tl} 9^{9-}$ (open ellipsoids) interconnected by $\mathrm{K8}$. (b) [010] view illustrating the stacking of $\mathrm{Tl}_{9}{ }^{9}$, double $\mathrm{Tl}_{5}{ }^{7}$ - layers, and K^{+}and Na^{+}ions along c (Tl-shaded, K-open, Na-crossed ellipsoids).
words, the geometrical deviation of Tl_{5} from $D_{3 h}$ is not caused by, or does not result in, significant electronic variations, but it basically must arise from packing/bonding interactions with the cations. The $\mathrm{Tl}_{5}{ }^{7-}$ example thus provides further testimony for the common characteristics of trigonal-bipyramidal clusters previously represented by $\mathrm{Sn}_{5}{ }^{2-}, \mathrm{Pb}_{5}{ }^{2-},{ }^{18}$ and $\mathrm{Bi}_{5}{ }^{3+},{ }^{39}$ all of which obey Wade's $(n+1)$ orbital rule. ${ }^{11}$ Formal charges in this series can be understood with classic valence rules as well, ${ }^{33}$ in the following way: $\mathrm{Tl}_{5}{ }^{7-} \simeq\left(3 \mathrm{~b}-\mathrm{Tl}^{2-}\right)_{2}+\left(4 \mathrm{~b}-\mathrm{Tl}^{1-}\right)_{3} ; \mathrm{Pb}_{5}{ }^{2-} \simeq$ (3b-$\left.\mathrm{Pb}^{1-}\right)_{2}+\left(4 \mathrm{~b}-\mathrm{Pb}^{\circ}\right)_{3} ; \mathrm{Bi}_{5}{ }^{3+} \simeq\left(3 \mathrm{~b}-\mathrm{Bi}^{\circ}\right)_{2}+\left(4 \mathrm{~b}-\mathrm{Bi}^{1+}\right)_{3}$ where $n \mathrm{~b}$ means n-bonded. Notice that these descriptions refer to oxidation states, not anything like real charge distributions.

Calculations relating the isolated Tl_{9} unit to other nine-atom examples are not as straightforward. Classical tricapped trigonal prismatic ($D_{3 h}$, closo) clusters such as $\mathrm{Ge}_{9}{ }^{2-}$ require $2 n+2=20$ skeletal electrons, whereas we appear to have only $2 n=18$ available for the unusually shaped $\mathrm{Tl}_{9}{ }^{9-}$ assuming that $\mathrm{Tl}_{5}{ }^{7-}$ is correctly assigned. (In fact, the isosteric, 22 -electron ($2 n+4$) but closo- $\mathrm{Big}_{9}{ }^{5+}$ can be rationalized in terms of the fall in energy of the nominal $\mathrm{a}_{2}{ }^{\prime \prime}$ LUMO in $\mathrm{Ge}_{9}{ }^{2-}$ and $\mathrm{B}_{9} \mathrm{H}_{9}{ }^{2-}$ when the trigonal prism is elongated so that the ratio of the height:basal edge lengths (h:e) is increased from $\sim 1.0: 1$ to $\sim 1.15: 1 .{ }^{26,28}$ An h:e of 1.08 is alsosufficient in the $2 n+3 \mathrm{Sn}_{9}{ }^{3-} \cdot{ }^{34}$) The study therefore included consideration of the dependence of electron counts on the skeletal distortions in units proportioned more like known species with $\mathrm{h}: \mathrm{e}=1.15: 1\left(\mathrm{Bi}_{9}{ }^{5+}\right)$ and $\mathrm{h}: \mathrm{e}=0.97: 1\left(\mathrm{~B}_{9} \mathrm{H}_{9}{ }^{2-}\right)$ with the basal edges fixed at $3.28 \AA$. Figure 5 illustrates the essence of these, the MO energies, and symmetries for the skeletal orbitals for the observed $\mathrm{C}_{20} \mathrm{Tl}$, cluster (b) and the two $D_{3 h}$ models just noted in (a) and (c), respectively. (The nine low-lying and predominantly s-based MOs are not shown for clarity.) The gap

[^6]

Figure 5. The MO diagram for predominantly p-based orbitals in the observed ($C_{2 v}$) Tl99-cluster (b) relative to those for idealized $D_{3 h}$ versions proportional as $\mathrm{Bi}_{9}{ }^{5+}$ (a) and $\mathrm{B}_{9} \mathrm{H}_{9}{ }^{2-}$ (c). The last two differ because of the relative heights of the trigonal prisms.
calculated for the observed cluster is 0.70 eV with a $3 \mathrm{~b}_{2}$ HOMO orbital at -6.06 eV , reasonably close to that for the Tl_{5} cluster (-5.95 eV).

Referring to Figures 2a and 3 , the real $C_{2 v}$ geometry is reached through compression of the $1-1$ pair of atoms as well as stretching of 3-3 and both $4-4$ separations of the hypothetical $\mathrm{Bi}_{9}{ }^{5+}$-like model, together with the changes associated with movement of Tl 2 toward the center of the rectangular face defined by the Tl 4 atoms. Motions of the pair of Tl 3 atoms, like those of Tl 2 , can be viewed as following the changes in prism edges to maintain reasonable $\mathrm{Tl}-\mathrm{Tl}$ distances. Overlap population analyses reveal that the bonding $2 \mathrm{e}^{\prime}$ in the $\mathrm{Bi}_{9}{ }^{9+}$ model is split into strongly antibonding $3 b_{1}$ and $4 a_{1}$ orbitals upon such distortion because both have interactions that are bonding along the elongated 4-4 and antibonding along the new 2-3 contacts. Although the stretching of 3-3 decreases antibonding interactions in $3 b_{1}$, this influence is totally covered up by increased antibonding contribution along the $3-4$ edges. The $4 a_{1}$ is further destabilized by increased out-of-phase interactions between Tl 2 and the Tl 4 face atoms. The resultant $2 \mathrm{a}_{2}$ LUMO contains dominant contributions from Tl4 atoms that are antibonding along all four edges, while the $3 \mathrm{~b}_{2}$ HOMO exhibits in-phase interactions within both 1-4-4 triangular faces but out-of-phase components along the three prismatic edges. The $3 \mathrm{~b}_{2}$ orbital is also the highest bonding member according to total overlap populations. Thus, after assignment of the nine low-lying, mainly s-based orbitals to the thallium atoms, the calculation predicts nine bonding skeletal MOs as observed for the $\mathrm{Tl}_{9}{ }^{9-}$ cluster anion. Comparable distortions of the more distance $\mathrm{B}_{9} \mathrm{H}_{9}{ }^{2-}$-like geometry, which is already $2 n+2$, to gain $\mathrm{Tl}_{9}{ }^{9-}$ are a little more complex (Figure 5c) because a third $2 \mathrm{a}_{2}{ }^{\prime \prime}$ (LUMO) orbital also becomes the bonding $3 \mathrm{~b}_{2}$ HOMO on pronounced elongation of two Tl4-Tl4 edges; the $2 \mathrm{e}^{\prime}$ sets in both $D_{3 h}$ cases naturally behave similarly on distortion.

The basic point concerning the observed distortion is that, analogous to those perceived in $\mathrm{K}_{8} \mathrm{In}_{11}{ }^{7}$ and $\mathrm{A}_{8} \mathrm{Tl}_{11}(\mathrm{~A}=\mathrm{K}, \mathrm{Rb}$, $\mathrm{Cs}),{ }^{6}$ the pronounced displacement of Tl 2 along the 2 -fold axis toward the rectangular prismatic face greatly increases the
antibonding interactions between that atom and all neighbors in the $4 a_{1}$ and $3 b_{1}$ representations, thereby emptying these orbitals and again giving a hypoelectronic result. Four new contacts are established for Tl 2 at the expense of two 4-4 "bonds". Electronic reasons why the opening face is not instead expanded to a $\mathrm{C}_{4 v}$ square are probably because such motions would leave the Tl4 atoms only three-bonded in a loosely connected cluster. In fact, Tl 2 behaves as a quasi-interstitial atom in holding the cluster together, as better exemplified by the more symmetric $\mathrm{K}_{8} \mathrm{Tl}_{10} \mathrm{Zn}^{6}$ analogous to $\mathrm{K}_{8} \mathrm{In}_{10} \mathrm{Zn}$. ${ }^{9}$

The electronic state of $\mathrm{Tl}_{9}{ }^{9-}$ may also be easily recovered by vertex removal from a closo-polyhedron rather than through distortion of another nine-atom polyhedron. The classic (Wade's rule) icosahedral $\mathrm{Tl}_{12}{ }^{14}$ will contain 13 skeletal bonding (p) orbitals, and centering it by a Tl^{3+} ion gives the closed shell $\mathrm{Tl}_{13}{ }^{11-6}$. The process introduces no new bonding orbitals, rather, the interstitial's orbitals simply increase bonding in the existing MOs. This step is very similar to those already described for the heteroatom centering steps in $\mathrm{In}_{10} \mathrm{Ni}^{10-}\left(\sim C_{3 v}\right)^{30}$ and $\mathrm{In}_{10} \mathrm{Zn}^{8-}$ $\left(D_{4 d}\right) .^{9}$ The Wade's rules vis-a-vis arachno, hypho, etc. products are violated when two or more adjacent vertices are removed. Loss of electron pairs as well as surface-bonding skeletal orbitals is usually observed, but the number of electrons lost strongly depends on the number and geometric distribution of the missing atoms. Along the lines of the prophetic calculations of Burdett and Canadell, ${ }^{35}$ our EHMO results indicated that in the conversion of $\mathrm{Tl}_{13}{ }^{11}$ - directly to the closed shell, observed $\mathrm{Tl}_{9}{ }^{9}$ occurs simply through the removal of the indicated four adjoining vertices along with three skeletal electron pairs. In other words, three skeletal bonding orbitals are lost. The process can also be described in the other order: loss of the four vertices from $\mathrm{Tl}_{12}{ }^{14}$ along with three skeletal (p) pairs gives the hypothetical, closed shell $\mathrm{Tl}_{8}{ }^{12-}$, and addition of Tl^{3+} along the 2 -fold axis (T 12) gives the observed $\mathrm{Tl}_{9}{ }^{9}$-. Although this is a less "chemical" process than the distortion or centering, or both, that we have previously encountered, vertex removal with minimal rearrangements must be viewed as yet another means whereby high charges can be reduced and hypoelectronic clusters stabilized. Of course, the problems of generating a stable, well bonded solid structure also play obvious roles in what may be accessed.
The electron distribution in the phase $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$ can thus be described as follows. Each formula unit contains two $\mathrm{Tl}_{5}{ }^{7-}$ and one $\mathrm{Tl}_{9}{ }^{9}$ - clusters, which require altogether $2 \times 22+36=80$ valenceelectrons. Since each Tl atom has three valence electrons and each alkali metal atom, one, the number available is $19 \times$ $3+23 \times 1=80$, making the title compound electron-precise with a probable closed-shell structure and diamagnetic properties, as observed. Its high specific resistivity ($\rho_{293} \sim 800 \mu \Omega . \mathrm{cm}$) supports the extreme electron localization, although the possibly complex temperature dependencies below room temperature (above) will require more work to interpret. High resistivities with conflicting temperature dependencies have been found for other compounds containing what are predicted to be closed-shell clusters, e.g., $\mathrm{Na}_{2} \mathrm{In},{ }^{36} \beta-\mathrm{NaSn},{ }^{37} \mathrm{~K}_{8} \mathrm{In}_{10} \mathrm{Zn},{ }^{13}$ and $\mathrm{K}_{8} \mathrm{In}_{10} \mathrm{Hg} .{ }^{38}$ These weak conductivity effects may result from semimetal characteristics, a condition that does not conflict with the spirit of Zintl (valence) phase assignments.
It is interesting to note that $\mathrm{Tl}_{9}{ }_{9}$ - affords a second example (beyond $\mathrm{Tl}_{6}{ }^{6-}$) with which one might model the unusual neutron diffraction effects observed for a $\mathrm{K}-\mathrm{Tl}$ melt at the $1: 1$ composition, ${ }^{39}$ which is also at the maximum in melt resistivity. A sharp peak with a remarkably short $0.77 \AA^{-1}$ wavevector corresponds to intercluster separations of the order of 9.3 to $10 \AA$. For

(35) Burdett, J. K.; Canadell, E. Inorg. Chem. 1991, 30, 1991.

(36) Sevov, S. C.; Corbett, J. D. J. Solid State Chem. 1992, 103, 114.
(37) Nesper, R. Private communication.
(38) Sevov, S. C.; Ostenson, J. E.; Corbett, J. D. J. Alloys Comp. 1993, 202, 289.
(39) Xu, R.; Verkerk, P.; Howells, W. S.; de Wijs, G. A.; van der Horst, F.; van der Lugt, W. J. Phys.: Condensed Matter 1993, 5, 9253.
comparison, the shortest (center-to-center) cluster separation in the $\mathrm{Tl}_{9}{ }_{9}{ }^{9}$ layers at room temperature (Figure 4 a) is $8.94 \AA$, which becomes $9.3 \AA$ with an estimated 4% expansion in the melt at 350 ${ }^{\circ} \mathrm{C}$. Even $\mathrm{Tl}_{12}{ }^{14-}$ or $\mathrm{Tl}_{13}{ }^{11-}$ polyhedra cannot be readily excluded as models. Of course, the solids isolated from these systems also represent the most effective ways of simultaneously fitting space, solvating or bonding cluster anions with cations, and meeting electronic requirements, and there obviously is no assurance that the species found in crystalline solids are predominant in the liquid state. The long range order in the melt suggested by the above diffraction results also imply strong and specific cationpolyanion bonding (or solvation) effects in the liquid state, as have been inferred in many solid structures.

Although a few examples of classical (Wade's rule) clusters are now known in the solid state for the heavier triel (group 15) elements In and Tl , e.g., the smaller $\mathrm{Tl}_{4}{ }^{8-}$ and $\mathrm{Tl}_{5}{ }^{7}$-, these elements generally appear to be too electron-poor to allow formation of classical isolated clusters with what would ordinarily be unfavorably high anionic charges. But, we have now seen several examples of how either distortions with or without interstitial atoms or vertex losses may avoid these problems in hypoelectronic examples, namely $\mathrm{Tl}_{11}{ }^{7-}, \mathrm{Tl}_{9}{ }^{9-}$, and $\mathrm{Tl}_{6}{ }^{6-}$. Clearly another way to stabilize discrete polyanions containing electron-poor elements like thallium is in combination with electron-richer elements in heteroatomic polyanions such as in the $\mathrm{TlSn}_{9}{ }^{3-}$ and $\mathrm{TISn}_{8}{ }^{3-}$ ions obtained via molecular solvent routes. ${ }^{40}$ Yet another way to stabilize a product is through intercluster exo bonds within three-dimensional networks, each intercluster bond reducing the formal charge on each unit by one, nominally by oxidizing the s-pair. ${ }^{13}$ We have found many examples of this for indium, and networks appear
to be the predominant feature with gallium. ${ }^{41}$ Again, the thallium results are in part pleasantly divergent from the characteristics of the lighter elements inasmuch as isolated and novel clusters appear in the majority of alkali metal-thallium phases. A few unusual networks have been found, for example, in (a) a combination of both isolated and condensed pentacapped trigonal prismatic $\mathrm{Tl}_{11}\left(\sim \mathrm{D}_{3 \mathrm{~h}}\right)$ units and (b) condensed icosahedra alone or with hexagonal antiprisms, but no analogues of known gallium or indium network structures so far. The variations and versatilities possible among these elements are both stimulating and challenging.

Acknowledgment. We are indebted to S. C. Sevov for calling the close relationships between $\mathrm{Tl}_{9}{ }^{9-}$ and the iscosahedral $\mathrm{Tl}_{12}{ }^{14}$ to our attention. J. Ostenson measured the magnetic data for us. The Ames Laboratory is operated for U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, DOE.

Supplementary Material Available: Tables of crystallographic details and positional and anisotropic displacement parameters for $\mathrm{Na}_{2} \mathrm{~K}_{21} \mathrm{Tl}_{19}$ and drawings of the cation distributions about the two clusters (5 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^7]
[^0]: - Abstract published in Advance ACS Abstracts, March 15, 1994.
 (1) The Ames Laboratory is operated for U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, DOE.
 (2) Stöhr, J.; Schäfer, H. Z. Naturforsch. 1979, 34B, 653.
 (3) Bruzzone, G.; Franceschi, E.; Merlo, F. J. Less-Common Met. 1978, 60,59.
 (4) Hansen, D. A.; Smith, J. F. Acta Crystallogr. 1967, 22, 836.
 (5) Cordier, G.; Müller, V. Z. Kristallogr. 1992, 198, 281.
 (6) Dong, Z. C.; Corbett, J. D. Unpublished research.
 (7) Sevov, S. C.; Corbett, J. D. Inorg. Chem. 1991, 30, 4875.
 (8) Dong, Z. C.; Corbett, J. D. J. Am. Chem. Soc. 1993, 115, 11299.
 (9) Sevov, S. C.; Corbett, J. D. Inorg. Chem. 1993, 32, 1059.
 (10) Zintl, E.; Dullenkopf, W. Z. Physik. Chem. 1932, B16, 195.
 (11) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.

[^1]: (12) (a) Shinar, J.; Dehner, B.; Beaudry, B. J.; Peterson, D. T. Phys. Rev. 1988, 37B, 2066. (b) El-Hanany, U. Rev. Sci. Instrum. 1973, 44, 1067.
 (13) Sevov, S. C.; Corbett, J. D. Inorg. Chem. 1992, 31, 1895.

[^2]: (18) Edwards, P. A.; Corbett, J. D. Inorg. Chem. 1977, 16, 903.
 (19) (a) Corbett, J. D. Inorg. Chem. 1968, 7, 198. (b) Krebs, B.; Mummert, M.; Brendel, C. J. Less-Common Met. 1986, 116, 159.
 (20) Guggenberger, L. J. Inorg. Chem. 1968, 7, 2260.
 (21) Koetzle, T. F.; Scarbrough, F. E.; Lipscomb, W. N. Inorg. Chem. 1968, 7, 1076.
 (22) Belin, C. H. E.; Corbett, J. D.; Cisar, A. J. Am. Chem. Soc. 1977, 99, 7163.
 (23) Hershaft, A.; Corbett, J. D. Inorg. Chem. 1963, 2, 979.
 (24) Friedman, R. M.; Corbett, J. D. Inorg. Chem. 1973, 12, 1134.
 (25) Corbett, J. D.; Edwards, P. A. J. Chem. Soc., Chem. Commun. 1975, 984.
 (26) Corbett, J. D. Chem. Rev. 1985, 85, 383.

[^3]: (27) Guggenberger, L. J.; Muetterties, E. L. J. Am. Chem. Soc., 1976, 98, 7221.
 (28) O'Neill, M. E.; Wade, K. J. Mol. Struct. 1983, 103, 259.
 (29) Such a figure is found in $\mathrm{Na}_{4}(\mathrm{en})_{7} \mathrm{Sn}_{9}$ (Diehl, L., Khodadedeh, K.; Kummer, D.; Strähle, J. Z. Naturforsch. 1976, 31B, 522), but this particular distortion appears to arise because of interactions of two prismatic edges in $\mathrm{Sn}_{9} 4$ with incompletely ligated sodium ions. ${ }^{26}$

[^4]: (30) Sevov, S. C.; Corbett, J. D. J. Am. Chem. Soc. 1993, 115, 9089.

[^5]: (31) Laves, F.; Walbaum, H. J. Z. Anorg. Allg. Chem. 1942, 250, 110.
 (32) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397.

[^6]: (33) von Schnering, H.-G. Angew. Chem., Int. Ed. Engl. 1981, $20,33$.
 (34) Critchlow, S. C.; Corbett, J. D. J. Am. Chem. Soc. 1983, 105, 5715.

[^7]: (40) Burns, R. C.; Corbett, J. D. J. Am. Chem. Soc. 1982, 104, 2804.
 (41) Belin, C.; Tillard-Charbonnel, M. Prog. Solid State Chem. 1993, 22, 59 and references therein.

